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In classical microtubule dynamic instability, the dynamics of the

built polymer depend only on the nucleotide state of its

individual tubulin molecules. Recent work is overturning this

view, pointing instead towards lattice plasticity, in which the

fine-structure and mechanics of the microtubule lattice are

emergent properties that depend not only on the nucleotide

state of each tubulin, but also on the nucleotide states of its

neighbours, on its and their isotypes, and on interacting

proteins, drugs, local mechanical strain, post translational

modifications, packing defects and solvent conditions. In

lattice plasticity models, the microtubule is an allosteric

molecular collective that integrates multiple mechanochemical

inputs and responds adaptively by adjusting its conformation,

stiffness and dynamics.
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Introduction
The assembly properties of tubulin heterodimers, the

building block of microtubules (MTs), are controlled to

a large extent by their exchangeable guanosine nucleo-

tide. GTP-tubulin polymerises readily, whilst GDP-

tubulin does not. Polymerisation of GTP-tubulin cataly-

ses GTP hydrolysis, so that in growing MTs, a stabilising,

newly-polymerised GTP-tubulin cap typically overlies a

metastable GDP-tubulin core. Stochastic breaches in the

stabilising GTP-cap expose the unstable GDP-core, trig-

gering rapid endwise depolymerisation. This overall

scheme was discovered some time ago [1], but the

detailed molecular mechanisms of MT dynamics remain

an important unsolved problem [2]. Can polymerised

tubulin in the cap and/or the core change conformation?

Does tubulin exchange only at MT tips, or can it

exchange into and out of the built lattice? Do lattice

dislocations and vacancies occur? And if any of these
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things do occur, how do they influence MT function?

To address these questions, recent work has sought to

visualise large-scale conformational changes, subunit

exchange, packing defects and modes of mechanical

failure within the lattice of assembled MTs. What is

emerging is an increasing body of experimental evidence

for structural plasticity models [3], in which the confor-

mation, mechanics and dynamics of the MT lattice are

sensitive not just to GTP and GDP, but also to a variety of

other factors.

Plasticity of the tip lattice
The potential for lattice plasticity in dynamic microtu-

bules begins at their tips. It remains tantalisingly unclear

exactly how GTP-tubulins incorporate into the growing

tip-lattice. GTP-tubulins interacting with the ends of

exposed single protofilaments (PFs) will form longitudi-

nal contacts but not lateral contacts (Figure 1a). If such

single PFs are sufficiently stable, they can go on to zipper

into the growing lattice progressively and relatively

slowly and the MT growth rate will approximate the rate

of PF growth. However there is in vitro evidence suggest-

ing that such single PFs are unstable [4], so that only

those that rapidly go on to make lateral contacts will

survive. If so, then growth must instead occur predomi-

nantly via GTP-tubulins fitting into niches at the exposed

leading edge of an already-built sheet or flared split tube

of PFs.

Which view is correct? The answer to this question is

unlikely to be simple. Nonetheless, recent electron

microscopy of growing plus ends adds substantial weight

to the view that incoming GTP-tubulins add to short,

separate PFs with an appreciable outwards curvature and

that these then anneal progressively into the growing

lattice [5��], which in turn serves to straighten them

and their subunits and propagate tubulation [6,7].

Computational simulation [8�] can provide insight into

processes that are inaccessible to wet experiments.

Recent simulations [9��] argue firmly for a lattice-driven

conformational change in GTP-tubulin.

In this picture, the assembled tip-lattice functions as an

allosteric effector [10] that remodels GTP-tubulin sub-

units after they land, whilst the key property that GTP

confers on tubulin is to make it more flexible, so allowing

it to be readily reshaped by incorporation into the lattice

and to store thereby relatively little strain energy. Con-

versely, GDP-tubulin would store appreciable strain-

energy when forced into shape by the lattice, effectively

becoming spring-loaded [11�]. What then happens if

GTP-tubulins pack alongside GDP-tubulins?
www.sciencedirect.com
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Types of microtubule lattice plasticity. (a) Plasticity in tip-lattice structure and conformation. Tubulin molecules landing from solution might add to

the ends of single PFs (1), or fit into niches in the built lattice (2,3). (b) Two examples of polymorphic protofilament (PF) number and packing. In

13-PF MTs (left), PFs lie exactly parallel to the MT axis and there is a single A-lattice seam, in which beta tubulin binds laterally to alpha tubulin.

The rest of the tube is built from the B-lattice, in which beta binds laterally to beta and alpha to alpha. Supernumerary A-lattice seams can occur

(not shown). 15 PF MTs (right) are entirely built from the B-lattice, lack seams, and have their PFs skewed relative to the MT long axis [16]. (c)

Binding of interactors (motors, MAPS, drugs) can drive the lattice to change conformation. The range of such allosteric effects (purple patch) is so

far little-studied. (d) MTs can change their stiffness, for example via lumenal acetylation [30��]. (e) Lattice defects support rapid exchange of

tubulin and attract specific interactors. At vacancies (left) one or more subunits is missing. At dislocations (right) the PF number changes at the

defect. (f) Reversible shifts in lattice spacing can occur, for example on kinesin binding [39��], raising the possibility of a mechanical work-cycle.

(g) MTs containing different tubulin isotypes can have different dynamics [23��]. Isotypes copolymerise and dose-response in copolymers [23��] is

of great interest. (h) Post-translational modifications (PTMs), both at C-termini and within the core sequence, can change lattice mechanics and

dynamics, but can also have indirect effects, by re-setting the affinity for particular interactors.
Biochemical kinetics shows that GDP-and GTP-tubulin

can copolymerise, provided GTP-tubulin is in sufficient

excess, and that the resulting MTs show intermediate

dynamics [12]. This suggests that GTP and GDP alloste-

rically influence not only the mechanics of the tubulin

molecule to which they are bound, but also the mechanics

of its neighbours. One consequence is that the spatial

extent of the stabilising cap of dynamic microtubules may

not map straightforwardly to the GTP-tubulin
www.sciencedirect.com 
distribution [13]. Further, there is evidence that GTP

and GDP molecules can exchange at the MT tip [14].

Plasticity of the core lattice
Whilst the typical number of PFs per MT (Figure 1b)

varies appreciably across the tree of life [15], so far all

eukaryotic microtubules appear based on just two packing

diagrams, the B-lattice, in which neighbouring PFs are

staggered by 0.9 nm, and the A-lattice, with a stagger of
Current Opinion in Cell Biology 2019, 56:88–93
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4.9 nm [16]. Within this framework, can the built lattice

change conformation? Direct comparison by electron

microscopy of the GDP, GMPCPP lattice and GTPgS
lattices of mixed-isoform brain tubulin reveals that it can,

with the most obvious hydrolysis-dependent change

being a reduction in the longitudinal lattice spacing

[17] due to compaction of alpha-tubulin immediately

adjacent to its longitudinal intersubunit contact. Remark-

ably however, hydrolysis-dependent lattice compaction is

not seen in MTs built from either Saccharomyces cerevisae
or Schizosaccharomyces pombe tubulins, even though these

microtubules show canonical dynamic instability [18�

,19�,20]. Clearly lattice compaction, when seen, signals

an underlying conformational change that stores strain-

energy, but equally clearly, this conformational change

only registers as a spacing change in brain MTs. Strain

energy is still stored in yeast GDP-MTs, but its effects on

the lattice spacing are too slight to detect. This is expli-

cable if the material properties of the lattice (its stiffness)

are changing according to its nucleotide state, and differ-

ently for different isotypes. Considerable progress has

recently been made in isolating single tubulin isotypes in

workable quantities [21,22] and the way is open now for

the field to decipher the roles of tubulin isotypes [22],

blends of isotypes [23��], isotype-specific post-transla-

tional modifications [24] and mutations [25] in the

dynamics [26��] and mechanics of the lattice. CryoEM

will be central [27].

Mechanical plasticity
MTs with different nucleotides but nominally similar (B-

lattice) structure have different mechanical stiffnesses

[28]. Post-translational modifications (PTMs) can also

change stiffness-1acetylation of lysine 40, which projects

into the MT lumen, protects mixed isoform brain MTs

from mechanical damage [29,30��], and signals to kinesin

and dynein motility [31]. Recent optical trapping work

shows that MTs that soften under strain show flattening

of their cross section [32��] and that their bending stiff-

ness varies depending on the magnitude of the applied

force. Length-dependent bending stiffness has previ-

ously been noted [33], but this new work [32��] shows

that stiffness varies according to load. Complex mechan-

ics is emerging as an important aspect of lattice plasticity

[2].

Lattice defects can enhance plasticity
Lattice vacancies and dislocations (Figure 1e) weaken the

MT and accelerate tubulin exchange. Microtubules

‘soften’ in response to repeated bending at the site of a

defect, but can self-repair by incorporating fresh tubulin

into the damaged site, which in turn can favour rescue

[34,35��,36]. Under particular growth conditions, defects

are incorporated with a fixed probability, so that the total

number of defects increases with age. This effect has

been proposed progressively to favour catastrophe as the

MT grows longer [13]. Defects are recognised by specific
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interactors — for example, katanins, which are enzymes

that catalyse subunit exchange and so can either enlarge

or repair defects [37]. Defects occur in cells [16] and there

is increasing evidence to suggest that they are exploited

as control points within the built lattice at which fresh

GTP tubulin can be introduced and rescue/regrowth

events can nucleate [35��,36].

The assembled lattice can split
MTs sliding across a kinesin surface can split [38], per-

haps at a defect site. However, splitting of the GDP

lattice can also be induced purely by binding of a

GDP-MT to a kinesin-coated surface [39��], because

the kinesin-bound lower part of the MT expands its

lattice spacing, generating shear force (see below). A-

lattice seams (Figure 1b) have been suggested to be more

susceptible to splitting than the rest of the lattice, albeit

this remains controversial. Seams have been proposed to

be a control point for dynamics — for example, a trigger-

point for catastrophes [40,41]. Rapid changes in PF num-

ber can occur in MTs in vitro, at rates too fast to corre-

spond to disassembly/reassembly [20]. Perhaps splitting

and reannealing might be involved here also.

Allosteric effectors can shift lattice
conformation
Allostery within individual tubulin heterodimers is

required for, but distinct from, lattice allostery — most

obviously, the allosteric effectors GTP and GDP influ-

ence not just the stability of the intersubunit interface

surrounding the E-site, but also the stability of lateral

contacts and the bending stiffness of the MT. A point

mutant in helix H7 of beta tubulin has been described

that suppresses the allosteric response to the GTP !
GDP transition [42]. Several drugs that influence polymer

stability bind well away from the longitudinal and lateral

intersubunit interfaces [43]. How far can the actions of

allosteric effectors be transmitted? Polymer allostery [44]

can allow information to be transmitted over substantial

distances. An important outstanding problem is to map

the range and mechanisms of larger-scale allosteric effects

in the MT.

MAPs can shift lattice conformation
The potentially complex effects of MAPs can be illus-

trated by considering EB proteins. EBs bind tightly to

both straight and curved regions [45] of growing MT tips,

and more weakly to the core lattice. At growing tips, they

diminish their own high-affinity binding site, by driving

GTP processing [46]. Different EB isotypes bind differ-

ently e.g. Bim1 binds S. cerevisae MTs at double the

stoichiometry that it binds brain MTs [18�]; Mal3 tip-

tracks on both brain and S. pombe MT tips, but under

different conditions [19�]. EBs focus the PF number to

13, de-skew the PF axes [18�,19�,20], stabilise A-lattice

seams, and generate ectopic seams [18�,41]. In mixed
www.sciencedirect.com
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isoform brain MTs, EBs drive lattice compaction [17], but

again, not in yeast MTs [18�,19�,20].

Motors can shift lattice conformation
My own lab recently showed that kinesin binding

expands the lattice spacing of mixed isoform GDP-brain

MTs by about 1.6%, and simultaneously inhibits their

depolymerisation [39��]. Releasing the kinesin, by adding

ADP, causes the lattice to recoil rapidly to its original

length. Much-earlier work already showed that kinesin

can prefer and propagate particular lattice states [47]. A

preference for GMPCPP MTs has also been seen [48].

Recent evidence hints at the corollary, whereby different

tip-lattice conformations can switch a kinesin-8 between

two different functional modes [49��]. Thus, the MT

lattice can sense kinesin engagement and respond by

altering its conformation and dynamics, raising the possi-

bility of a feedback loop linking motor activity to lattice

dynamics. Aside from the forces developed by kinesins,

measurements of strain energy in depolymerising tips

[11�] emphasise that shifts in lattice conformation can

also in principle do work (Figure 1c).

Drugs can shift lattice conformation
Tubulin binds MTAs (microtubule targeting agents) at

five different sites [43], and all can have allosteric as well

as local effects. The classic example is taxol, which binds

at a luminal site adjacent to the M-loop and stabilises

lateral contacts, but also acts as a remote lever [50] to

influence the GTP-site and thereby longitudinal contacts.

Taxol expands the lattice spacing (the more so if added

after MT assembly) and can straighten isolated PFs

[51,52]. It also influences lattice stiffness [32��], and tends

to restrict the PF number to 12–13 [52]. Recent simula-

tions [53�] suggest that taxol nearly eliminates the energy

difference between GTP- and GDP-tubulin.

Prospects
The study of lattice plasticity is in its infancy. For

example, we are only just beginning to explore the

influence of different tubulin isotypes, and isotype mix-

tures [23��], on lattice dynamics. But it is already clear

that microtubules can, in principle, serve the cell not just

as structural-mechanical scaffolding poles and rails and

springs, but as sensory antennas that accept multiple

chemical and mechanical inputs, store, integrate and

transmit their effects, and respond by adjusting their

own conformation, mechanics, assembly dynamics and

interactor-affinities. In this emerging new picture, the

MT lattice is an allosteric collective that continually

responds to its environment. One consequence is that

the structure and dynamics of particular MTs at particular

times will be history-dependent, extending lattice plas-

ticity into the time domain.

Very interesting new work delineates the residue-level

mechanisms by which kinesin can drive the GDP MT
www.sciencedirect.com 
lattice into a more GTP-like conformation, merging

results from an array of different biophysical and cell

biological experiments [54].
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