Confocal images of a blebbing cell
Simulation of acto-myosin clustering using CytoSim simulation program
Extraction of a membrane nanotube from a Giant Unilamellar Vesicle using optical tweezers
Various ways of mechanical cell manipulation
Super-resolution image of an actin network, colour indicates filament orientation
Sketch of GPI-nanoclustering by actomyosin activity

latest preprint:
| Assemblies of F-actin and myosin-II minifilaments: steric hindrance and stratification at the membrane cortex

read about our latest research story:
| Molecular clutch puts infection fighting cells into gear.

Darius How do cells cope with their environment? Deciphering mechanical processes at the cell surface leading to signalling events and the adaptation of cells to changes in the environment.

My research interests lie in the understanding the molecular and physical principles that govern processes at the plasma membrane of cells. Particularly, by which mechanisms the force generating machinery of the cell cortex, structural filaments and motor proteins, govern and regulate the mechanical properties of the cell membrane and dynamics of cell membrane components, and vice versa, how membrane organisation and signalling events feed-back to the regulation of the cortex machinery. These mechanisms, which in turn regulate cell motility and cell-cell interactions, underlie important, poorly-understood human diseases that constitute global health problems. The lab employs novel assays based on reconstituted membrane systems in combination with measurements on live cells using state of the art fluorescence microscopy and mechanical manipulation.

>> Research | Publications | Google Scholar | Pubmed | ORCID

 

And when we are not at the bench, we do things like this...